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Abstract

Numerical particle simulations and astronomical observations cre-
ate huge data sets containing uncorrelated 3D points of varying
size. These data sets cannot be visualized interactively by sim-
ply rendering millions of colored points for each frame. Therefore,
in many visualization applications a scalar density corresponding
to the point distribution is resampled on a regular grid for direct
volume rendering. However, many fine details are usually lost for
voxel resolutions which still allow interactive visualization on stan-
dard workstations. Since no surface geometry is associated with our
data sets, the recently introduced point-based rendering algorithms
cannot be applied as well.

In this paper we propose to accelerate the visualization of scat-
tered point data by a hierarchical data structure based on a PCA
clustering procedure. By traversing this structure for each frame
we can trade-off rendering speed vs. image quality. Our scheme
also reduces memory consumption by using quantized relative co-
ordinates and it allows for fast sorting of semi-transparent clusters.
We analyze various software and hardware implementations of our
renderer and demonstrate that we can now visualize data sets with
tens of millions of points interactively with sub-pixel screen space
error on current PC graphics hardware employing advanced vertex
shader functionality.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing Algorithms; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Object hierar-
chies; I.3.6 [Computer Graphics]: Methodology and Techniques—
Graphics data structures and data types

Keywords: Volume Rendering, Scattered Data, Splatting,
Hierarchical Visualization

1 Introduction
Quite a number of physical simulations create large point-
based data sets, for example Smoothed Particle Hydrodynam-
ics (SPH) [Monaghan 1992] and n-body simulations [Jenkins et al.
1998] in astrophysics. Other sources of scattered point data are as-
tronomical observations where new techniques for measuring three
dimensional positions of stars as in the GAIA project [GAIA 2003]
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will create huge real-world data sets in the near future as well.
These data sets contain up to hundreds of millions of points each
with information about position xi, diameter si, and intensity ci at
various wavelengths.

These data sets are too large to be rendered in their entirety at in-
teractive frame rates and the memory requirements are quite prob-
lematic for standard PCs as well. An alternative approach [Kähler
et al. 2002; Park et al. 2002] is to resample the data sets and use
standard volume visualization, which can be implemented quite ef-
ficiently using texture mapping [Rezk-Salama et al. 2000]. How-
ever, this technique imposes a low-pass filter on the data set, and
for reasonable frame rates and memory usage the filter domain is
so large that almost no subtle details within the data will be visible
any more. To some extent this can be avoided for off-line rendering
of animations. In this case hierarchical volume scene graphs can be
used e.g. for visualizing stellar nebula [Nadeau et al. 2000].

In order to allow scientists to view these data sets at high res-
olution interactively on desktop workstations or PCs, we want to
visualize the scattered data directly without resampling them to a
volume density. We can achieve significant speedup by applying
clustering techniques to create a hierarchical representation of the
data set. The hierarchy can then be rendered adaptively according
to screen resolution and focus points, and a lower hierarchy level
can be chosen for the visualization during interaction. Of course,
hierarchical data structures generate additional memory overhead
imposing even greater restrictions on the maximum data size, but
storage requirements can be reduced using relative position coding,
while still maintaining high accuracy with respect to the particle
positions.

In order to visualize scattered data interactively the point coor-
dinates have to be transformed into image space and rasterized into
the frame buffer. Current graphics hardware is highly optimized for
this task and frees up the CPU for concurrent hierarchy selection
and traversal. As triangles are the dominating primitive in com-
puter games, rasterization throughput may be higher for polygons
than for points. However, this will have no major effect, since our
approach is more likely to be geometry limited rather than rasteri-
zation limited, because large numbers of points can only be visually
precepted well as long as they do not overlap too much. For certain
types of data — e.g. with widely varying point sizes or semitrans-
parent appearance — blending may be necessary in order to enable
visual depth perception. This requires the points to be sorted ac-
cording to their projected z coordinates. Due to the high number
of points this is nontrivial to do in realtime, but can be efficiently
implemented based on our hierarchical data structures.

2 Previous Work
There has been quite a lot of work in the area of using foot-
prints as rendering primitives for sampled data. Laur and Han-
rahan [1991] introduced hierarchical splatting for volume render-
ing using Gouraud-shaded polygons. Researchers like Mueller et
al. [1999], Swan et al. [1997], and Zwicker et al. [2001a] focus
mainly on the improvement of the visual quality of texture splat-

433

Administrator
IEEE Visualization 2003,October 19-24,  2003, Seattle, Washington, USA0-7803-8120-3/03/$17.00 ©2003 IEEE



ting; however, the techniques described in these papers only apply
to the reconstruction of continuous functions e.g. for volume ren-
dering of regular grid data, and they do not address adaptive ren-
dering or data size reduction. Additionally, there exist a number of
non-realtime rendering systems for large point-based data sets, e.g.
for rendering film sequences [Cox 1996].

Using points as rendering primitives is a topic of ongoing re-
search. However, almost all publications in this area deal with
the rendering of geometric surfaces. Alexa et al. [2001], Pfister et
al. [2000], Rusinkiewicz and Levoy [2000], Wand et al. [2001], and
Zwicker et al. [2001b] showed different methods to create data hier-
archies of surfaces represented by sample points and how to render
them efficiently. As the intrinsic model of points describing a sur-
face is fundamentally different to the model used for scattered data,
their clustering techniques cannot be applied in our case. Pauly
et al. [2002] used principal component analysis for clustering, but
with a different hierarchy concept compared to our approach. Some
systems [Rusinkiewicz and Levoy 2000; Botsch et al. 2002] use
quantized relative coordinates for storing the points in a hierarchi-
cal data structure, but these approaches were not optimized for fast
GPU access because the data structures had to be interpreted by the
CPU. Additionally, the presented rendering techniques have been
designed to create smooth surfaces without holes and they allow no
or only few layers of transparency. Again, this does not meet our
requirements.

First steps for visualizing uncorrelated samples for SPH data
have been presented by Rau and Straßer [1995]. Jang et al. [2002]
introduced a multiresolution splatting approach for non-uniform
data. However, in their solution the higher hierarchy levels are al-
ways stored in uniform grids, and they cannot render more than
approximately 135,000 splats per second. This technique seems to
be more appropriate for almost flat and regular data.

For rendering large quantities a simple brute force approach
would store the complete data set on the graphics card and use point
array rendering for displaying the data set. As soon as the data set
does not fit into graphics memory, rendering speed can drop by an
order of magnitude.

In the following we propose a hierarchical data structure based
on principal component analysis or similar clustering techniques
that enables us to render large data sets adaptively at high frame
rates on current PC hardware without compromising visual quality.
Our scheme also reduces memory consumption by using quantized
relative coordinates and it allows for fast sorting of semi-transparent
clusters.

3 Data Storage
Using hierarchical structures imposes higher memory requirements
than storing the same data in flat arrays. A trivial implementation
can easily exhaust main memory on regular workstations for large
data sets, even in the steady state. Memory bandwidth is limited,
and traversing the hierarchy for rendering adds overhead for recur-
sive function calls and pointer dereferencing. Additionally, with
current graphics APIs there is no means to hand this process over
to the GPU.

Therefore, we decoupled hierarchy structures (clusters) from
data structures (points). The clusters contain a pointer to the next
hierarchy level, a pointer to offspring point data, and the number
of children. The point data itself only contains the point position,
size, and color values. In principle one would like to store raw data
values and use runtime classification for point size and color selec-
tion, but the cluster hierarchy itself and especially the pre-processed
cluster representatives highly depend on point sizes and colors.

Figure 1 shows the lowest three levels of a typical data hierarchy.
The finest level n does not contain any hierarchy information at all,
thus no cluster nodes are needed. In level n− 1 a point data struc-
ture is related to each cluster node, containing its centroid. Cluster
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Figure 1: The last three levels of a typical data hierarchy. The
green clusters can be rendered at their highest hierarchy level in a
single loop without recursively descending the data structure. The
point data correlated to the cluster centroids is not embedded in the
clusters but stored in point structures parallel to the clusters.

Figure 2: Point coordinates are scaled and quantized relatively to
the position of the cluster centroid for storage.

nodes and point data are connected on the previous level. The dia-
gram shows which points are rendered for a typical cluster node for
rendering levels n−2, n−1, or n.

The decoupled data structure enables us to store point data for
any given combination of rendering level and cluster node in a con-
tinuous array. This reduces the number of necessary recursive func-
tion calls and helps us with accelerating rendering by using graphics
hardware. Additionally, it ensures that the data is concatenated for
efficient cache usage.

Point data sets tend to get really large, and they need high posi-
tional resolution. Memory requirements can be reduced to one half
or even one quarter by storing coordinates relatively to the centroids
of the inspected clusters as depicted in Fig. 2. As the necessary po-
sitional resolution is much lower for encoding relative coordinates,
they can be quantized using bytes or shorts instead of floats.

Finally, for a typical data set like the VIRGO n-body simulation
(Fig. 8) with 16 million points in level 6 we need 160 Mbyte for
point data and 32 Mbyte for the cluster hierarchy when storing point
coordinates in bytes only.
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• Select cluster j (point indices I j) with largest distortion ∆ j

• Calculate auto-covariance matrix from centroid X j:
A = ∑ i∈I j

(xi −X j)(xi −X j)
T

• Find Eigenvector emax of A corresponding to the
largest Eigenvalue λmax

• Split cluster j into two new clusters:
In1 = {i ∈ I j : 〈xi −X j,emax〉 ≥ 0}
In2 = {i ∈ I j : 〈xi −X j,emax〉 < 0}

• Calculate centroids and distortions for the new clusters

Figure 3: The PCA-split algorithm

4 Creating the Hierarchy
In order to create one level of the hierarchy the input data points
have to be sorted into bins. For each bin a point on the next higher
hierarchy level is created, representing all points that fell into that
bin. The properties of the newly created point are chosen so that its
visual representation matches that of the substituted points best.

To obtain the set of bins several clustering schemes can be used.
The most common solution is to subdivide the data set into an oc-
tree, which can be used efficiently for sorting as well (Sect. 6).

Another approach that has much better spatial adaptation prop-
erties is to perform a series of principal component analysis
(PCA) splits, each dividing the cluster with the currently highest
distortion as defined below into two halves. As PCA is a standard
technique, we only present a short summary of the PCA-split algo-
rithm in Fig. 3, more details can be found e.g. in [Jolliffe 1986].

In the following I j denotes the set of indices of the points of
cluster j. That is, cluster j consists of all points xi, i ∈ I j with
diameters si, and has the weighted centroid X j and distortion ∆ j
with

X j =
∑ i∈I j

si ·xi

∑ i∈I j
si

, ∆2
j = ∑

i∈I j

∥

∥xi −X j
∥

∥

2
2 .

As we have to perform this split operation several million times, fast
cluster selection is of uttermost importance. Therefore, we keep the
clusters in a skip-list [Pugh 1990], sorted by decreasing ∆2

j . A skip-
list is essentially a sorted linked list with randomized link depth,
with O(logn) complexity in the average case for search, insert, and
delete operations. Its properties are similar to balanced trees, with
the advantage of faster insert and delete, O(1) largest value search,
very small memory footprint, and almost trivial implementation.

This splitting process is continued until the maximum distortion
or the average cluster size fall below pre-defined minima. After
the visual properties of the new points have been obtained, these
points undergo another series of PCA-splits in order to create the
next hierarchy level. For most applications like the VIRGO data
set a hierarchy depth of more than about 6 levels is usually not
appropriate. For this data set with its 16 million points the hierarchy
creation process takes only a few minutes.

For creating a visually approximative representation of the clus-
ter j compared to its children the most important aspect is that the
radiant flux Φ has to be the same. For the irradiance c j of the new
centroid point representing the cluster this means for each of the
representative wave lengths

Φ j = A j · c j =
π
4

s2
j c j =

π
4 ∑

i∈I j

s2
i ci . (1)

The cluster representative should be larger than the largest of its
children in order to keep some visual continuity. Additionally,
small cluster points would have very high local intensities, which
could finally saturate the covered pixels in the blending step dur-
ing rendering. Distributed clusters — that is clusters with a large
average distance of their children to the centroid compared to the
children’s point sizes — should have larger representatives than lo-
cally agglomerated ones. On the other hand, they must not be too

large, as the human eye is very sensitive to edges, and enlarging a
point implies reducing its intensity, diminishing the visibility of the
edge.

After comparing several different functions, we found a trade-off
that creates acceptable results for almost all point distributions. It
tries to combine point sizes and their distances to the centroid, and
ensures, that the final size does not fall below the size of the largest
point of the cluster:

m j = argmax
i∈I j

si ,

s j =
0.5

|I j|−1

√

∑
i∈I j\{m j}

si
∥

∥xi −X j
∥

∥

2 + sm j . (2)

The scaling factor 1
2 in Eq. 2 of the weighted average point size of

all points except the largest one before adding to the largest point
size sm j has been determined empirically.

This calculated point size is subject to further restrictions, if in-
tensities are stored in main memory as unsigned bytes in order to
save memory. The system has to assure that the calculated point
size does not overflow the intensity domain, and it has to increase
the point size in case of saturation.

Eq. 1 and Eq. 2 are highly dependent on the blending func-
tion, and our definition only holds for cumulative blending (C =
c1 + c2). For other blending functions, like the over operator
(C = α1c1 + (1−α1)c2), c j may be view dependent, as the to-
tal flux of overlapping points is no longer necessarily the sum of
the individual fluxes of the points. With the current approach view
dependent intensities cannot be modeled. However, with adaptive
rendering we will use coarser hierarchy levels only for clusters that
are projected to areas on the screen that are small or outside some
region of interest, and it is very unlikely that view dependencies
will be noticed in such small regions.

5 Hierarchy Traversal
During rendering the hierarchy is traversed recursively. For each
cluster the system may decide to descend further down into the hi-
erarchy, render the centroid at the current level, or skip the cluster
altogether when it is not visible. The decision can be based upon
some maximum screen error metrics, the distance to the viewer,
or some given region of interest. These rules should be computa-
tionally cheap. As a rule of thumb, evaluating the rule should be
cheaper than transforming and rendering one point of the cluster.

For more complex rules and for accelerating the traversal pro-
cess, the system may already decide on a higher level n, that it will
render all offsprings of level n + δn (see Fig. 4). Then the children
do not have to be traversed. Even for simple adaptivity rules this has
a strong effect on rendering performance. As described in Sect. 3,
the point data of all children is stored linearly in memory, thus they
can be addressed in a single loop, or even by a single OpenGL array
rendering call. See Fig. 5 for a pseudo code fragment.

Remember that we are using relative coordinates for storing the
point locations. In this context children of different clusters can
only be rendered in a single loop when the base centroid and the
scaling factor for the relative coordinates is the same for all consid-
ered children. We can use the coordinates of a centroid of level n
for the calculation of the relative coordinates of all descendants of
level n + δn. In order to use this arrangement efficiently, δn has to
be constant for the data set. We get a speedup of about 50 percent
for an average cluster size of 5 points and δn = 2, more for larger
clusters. For adaptive rendering higher δn are less efficient as the
traversal routine has to select the clusters to be rendered on a higher
level. Another drawback is that being able to render a set of clusters
in one piece comes at the cost of higher discretization errors.
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Figure 4: During traversal, the final rendering level should be se-
lected at some higher level of the hierarchy for speedup reasons
(δn = 2 in this case).

void render cluster (cluster t *c, point t *p) {
if (cluster visible (c)) { /* trivial reject */

if (descend cluster (c, p, δn)) {
for i = 0...c→len[0] /* recursion */
render cluster (&c→children[i], &c→points[i])

} else {
len = c→len[δn −1]
for i = 0...δn −2 /* find first point of hierarchy depth δn */
c = c→children[0] /* not executed for δn = 1 */

render points (c→points, len)
} } }

Figure 5: Pseudo code for traversing the hierarchy.

6 Sorting
For many of the investigated data types cumulative blending is an
effective way of visualizing both global and local structures in the
data sets. However, with other data sets, for instance reversible
Apollonian packings (Fig. 20), the over operator is necessary to vi-
sualize the visual depth. Non-commutative blending operators re-
quire the data points to be sorted according to view distance. The
implemented hierarchy can be used to efficiently sort the cluster
centroids using quicksort or bucketsort. The cluster points them-
selves have to be sorted before rendering as well. Bucketsort only
creates an approximative sorting order, but has the advantage of
lower computational complexity (O(n) vs. O(n logn)) and its im-
plementation is much simpler and thus faster. The rendered images
are almost indistinguishable when using a relatively large number
of buckets.

Sorting the cluster centroids is equivalent to the typical BSP-tree
sorting, as long as the distances of any two neighboring centroids
to their common splitting plane are equal (Fig. 6). The octree clus-
tering approach has this property, however, its spatial adaption to
the local point density is much worse than the proposed PCA-split
approach. Still, we have no choice but to use octrees if we really
care about the correct sorting order.

Even with correctly sorted clusters, there is a chance that over-
lapping points are rendered in the wrong order, as it can be seen in
Fig. 7. For many data sets the points can be thought to be infinitely
small, in that case the points are rendered correctly. Other data sets
are more sensitive to their sorting order, and require larger average
cluster sizes by combining several octree levels to a single level.
This helps reducing the chance of sorting errors, as the points of a
single cluster are always rendered in the correct order.

c1

d1

c2

d2

Figure 6: Distance sorting according to d1, d2 is equivalent to BSP
sorting for c1 = c2. Note that the sorting order of d1, d2 changes
exactly at the same time the visibility order of the two cells changes.

2nd

1st

BSP order

correct order

Figure 7: Back-to-front distance sorting according to BSP fails for
non-split overlapping points. In this example the right cluster is
rendered before the left one due to BSP order.

In order to sort the Voronoi cells produced by the PCA-splits, ad-
ditional connectivity and splitting plane information is needed for
MPVO [Max et al. 1990; Williams 1992] or equivalent algorithms.
This implies a huge additional memory overhead we would like to
avoid. It is ongoing research, how this approach can be combined
with per-pixel clipping or z-test dependent blending to render ex-
actly sorted images even for cases like in Fig. 7.

7 Rasterization
Since using only one vertex per primitive can accelerate the ren-
dering process significantly, we will usually approximate the splats
using OpenGL anti-aliased points. Other footprints can be used
by rendering point sprites without additional cost (see Fig. 20), but
they are only available on NVidia hardware right now. For render-
ing large quantities of points the generally fastest approach is to use
vertex coordinates and attributes that are given by vertex arrays or
display lists. However, display lists have to be stored in precious
graphics memory and are more likely to be larger in size, as the
graphics card has to store additional information about its contents
and format.

When a point projects to an area with diameter s̃ smaller than a
single pixel on the screen, its brightness has to be attenuated. The
new alpha value is

α̃ = α · s̃2
, (3)

assuming that point color is multiplied with alpha during blend-
ing. Note that attenuation increases quantization artifacts due to the
limited frame buffer depth. Therefore, adaptive rendering can even
improve the image quality by choosing higher levels for parts of the
cluster that tend to project to very small screen areas.

For drawing points with varying sizes we can use ver-
tex programs, a concept NVidia introduced with the GeForce3
(NV_vertex_program). Besides changing the point size on a
per vertex level and adding the last contribution of the relative co-
ordinates, the vertex shader is responsible for correct alpha attenua-
tion as indicated in Eq. 3, which is not possible without using vertex
programs at all when we want to employ vertex arrays. Figure 15
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Figure 8: A total view of one of the VIRGO
n-body simulations with 16.8 million parti-
cles (level 6).

Figure 9: A total view of one of the VIRGO
n-body simulations rendered adaptively with
a maximum screen space error of 2 pixels.

Figure 10: Differences of adaptive vs. full
data rendering (contrast enhanced by 400%).

shows the program parameter configuration and the actual vertex
program written in Cg [Mark et al. 2003] that contains all of the
above. Additionally, point size and alpha values are multiplied by
two global scaling factors. It compiles into 29 program statements
for both NV vertex program and ARB vertex program.

The later extension, which is supported by ATI’s Radeon 9700,
finally enables us to evaluate the algorithm on this card as well.
The previous EXT_vertex_shader extension did not allow us
to alter the point size on a per-vertex basis. As most of the per-
formance gain comes from this last step, we could not really ben-
efit from the Radeon’s high performance geometry engine with the
old extension. Unfortunately, both anti-aliased point image qual-
ity and execution speed is clearly below our expectations with the
current drivers (see Sect. 9 for a comparison). Note that at least
the setup is still much slower on NVidia cards as well compared to
NV vertex program.

ATI’s DirectX drivers are more mature than their OpenGL
drivers, thus we investigated whether this API would be an option.
However, the so-called flexible vertex format of DirectX up to ver-
sion 8 only supports vertices specified as floats. As we do not want
to store the points’ vertices in this format due to its memory re-
quirements, we would have to convert them on the fly, which would
make the use of vertex buffers extremely expensive as they would
have to be converted by the CPU.

With the availability of vertex shaders we can now use vertex
arrays to send a large part of the hierarchy to the graphics hardware.
When sorting is enabled, index arrays have to be used to select the
points in the correct order. These calls are highly optimized, and the
CPU can already continue to select the next cluster to be rendered
in parallel to the rasterization process. As pointed out in Sect. 5 we
have to take care that we only send down that part of the hierarchy in
one piece that is related to the same base centroid for the calculation
of the relative coordinates.

8 Alternative Rendering Approaches
For comparison, several other techniques have been developed and
integrated into the rendering framework. The different rendering
backends can be selected during runtime at almost no cost.

As hierarchy traversal and coordinate transformation seem to be
the limiting factors for the visualization of scattered data, a software
rasterizer is a valid option to be considered. Most points of a low
hierarchy level project to a very small area on the screen, so the ras-
terizer should be optimized for single pixel points. This implemen-
tation can also function as a reference for the OpenGL based render
backends, as it draws the points to a floating point frame buffer.

With this feature we reduce the chance of missing contributions of
very small or dim points. However, the CPU is completely respon-
sible for vertex transformation and rasterization, thus this solution
is most likely to be the least efficient of the presented methods, and
new graphics hardware like the Radeon 9700 or the GeForce FX is
able to render into floating point frame buffers as well.

In contrast to regular PC workstations used by typical end users,
virtual reality environments are still often based on Silicon Graph-
ics systems. As the InfiniteReality hardware does not have a pro-
grammable graphics pipe, we additionally implemented a regular
billboard renderer. Using billboards is less efficient compared to
OpenGL anti-aliased points or point sprites, as four vertices have to
be calculated and sent down the pipeline for a single data point.

Note that rendering points without vertex programs is not an
option, as with the regular OpenGL pipeline one can only set the
current point size outside an glBegin() / glEnd() pair, which
reduces the overall speed considerably due to the state changes.

9 Results and Discussion
The images 8, 9, and 17 show visualizations of n-body simulations
carried out by the Virgo Supercomputing Consortium. All images
show redshift z = 0 for the τCDM model. The velocities of the
galaxies relative to the simulated base cube have been color coded.

In images 11 to 13 one can see different levels of the data set.
Note that level 3 would usually not be used for rendering, but it is
a potential level for deciding on the rendering depth, as shown in
Fig. 4. Figures 18 to 20 show other data sets and rendering modes.
Please note that the clearly visible aliasing in Fig. 18 is inherent to
the according data set and not an artefact of the presented rendering
technique. In most areas the data set contains an almost regular grid
and the splats are used for visualizing the grid structure and not for
approximating any underlying function.

Despite the speed of modern processors, the OpenGL acceler-
ated version is still superior to the software approach, which em-
ployed a very crude rasterizer in our implementation that renders
large points in poor quality only. One major drawback of the
software-based system is that the floating point frame buffer has to
be sent down the AGP bus to the graphics card, though with latest
AGP 8x graphics hardware and current drivers this only imposes an
upper limit of 40 fps for a 10002 viewport, not including the time
for clearing and rendering the software buffer. However, software
based rendering still seems to be one of the slowest approaches.
Using a 24 bit frame buffer could accelerate this process, but then
we loose the major advantage of the software solution.
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Level # Points Av. pt. size Software Billboards Vertexprogs V.p.a. δn = 1 V.p.a. V.p.a. adapt. δn = 1 V.p.a. adapt. ATI V.p.a.†

6 16.8M 0.5 847 1724 495 1389 427 104 153 1490
5 3.3M 0.6 433 752 229 262 85 93 79 287
4 671K 0.9 120 161 44 50 17 17 47 57
3 123K 1.5 48 30 8.8 10 3.7 3.7 10 12
2 24K 2.9 26 7.6 2.6 2.7 1.8 1.8 2.7 2.6

† ARB_vertex_program with vertex arrays, evaluated on ATI’s Radeon 9700, WindowsXP, δn = 2
V.p.a. Vertex program with array rendering

Table 1: Rendering times in ms for different rendering techniques and levels for a 5002 viewport, δn = 2 except where noted.

Level # Points Soft∗ δn = 1 Soft† δn = 1 Soft† Soft‡ V.p.a.∗ δn = 1 V.p.a.† δn = 1 V.p.a.† V.p.a.‡ V.p.a. adapt.‡ δn = 1 V.p.a. adapt.‡

6 16.8M 6670 5880 4760 3570 5880 5260 3125 1890 252 690
5 3.3M 1320 1250 1040 752 1100 1040 658 379 233 356
4 671K 298 282 238 182 220 204 134 78 126 78
3 123K 85 81 71 61 44 40 26 16 28 16
2 24K 41 40 28 29 10 8.2 3.2 3.2 6.1 3.2

Soft Software rendering
V.p.a. Vertex program with array rendering

∗ quicksort
† bucketsort, # of buckets = max(16 ·# of points per cluster,1024)
‡ bucketsort, # of buckets = max(# of points per cluster,128)

Table 2: Rendering times in ms for rendering sorted points with correct blending for a 5002 viewport, δn = 2 except where noted.

Viewport Rendering time Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

1602 9.5 0 4K 51K 1.7K 0 0
4002 75 0 2 53K 348K 224K 23K
7002 348 0 0 418 343K 1.4M 1.8M

10002 769 0 0 0 82K 1.9M 6.2M

Table 3: Number of rendered points per level and rendering times in ms for adaptive rendering vs. viewport size, δn = 1.

Figure 11: VIRGO at level 3.
(123,000 clusters = 0.74%)
Rendered at 270 fps.

Figure 12: Level 4.
(671,000 clusters = 4%)
Rendered at 59 fps.

Figure 13: Level 5.
(3.3 million clusters = 19.7%)
Rendered at 12 fps.

Figure 14: Differences of soft-
ware vs. OpenGL rasterization
(contrast enhanced by 400%).

Table 1 lists some performance measurements for the different
algorithms and levels for δn = 2, except where noted, together with
the number of points, and the average projected size. It can be no-
ticed that using billboards is rather slow, as the CPU has additional
work to do for setting up four times the amount of vertices to be
sent to the graphics pipe. The system used for the evaluation was
an Pentium4 2800 MHz with an Intel 7225 chipset with 4 GB dual
channel DDR 333 memory and a GeForce FX 5800 Ultra graph-
ics pipe on a Linux system, except where noted. The Windows XP
drivers showed similar but slightly lower performance figures for
the GeForce. The Linux drivers for the Radeon currently don’t have
support for the used chipset. Please note that the high performance
memory setup has a much larger impact on the software rasterizer
than on the vertex array renderer.

The adaptive algorithm shown in the table uses a simple adap-
tive scheme with vertex programs and vertex arrays, selecting the
clusters that should be traversed on the CPU by the maximum
screen projection size of the cluster children and the given max-
imum traversal depth. If the projected size exceeds 2 pixels, the
cluster is traversed further, otherwise its children are rendered to
screen for δn = 1, for δn = 2 the same criterion is applied to its

grandchildren. Using these settings, there is almost no visual dif-
ference between the data set rendered in full resolution compared to
the adaptive rendering. With δn = 1 we get a finer hierarchy selec-
tion, but we also reduce the average array size that can be used for
rendering, which explains the performance loss in the lower levels.
The difference image in Fig. 10 shows quite some changes in the vi-
sualization, however, they have the same quality as additional noise
and do not disturb the visual appearance. Most of the screen space
difference comes from points that happen to be rendered one pixel
off to their original positions. While the human visual system is not
able to notice these differences, they have a rather large impact on
difference images. We also noticed that the quantization and float-
ing point roundoff errors introduced by using graphics hardware for
rendering (Fig. 14) are larger than the ones created by adaptive ren-
dering. The contrast of both difference images has been enhanced
by 400 percent in order to show their properties more clearly.

Table 2 lists some times for combinations of different sorting and
rendering techniques. Please note that the qsort based sorting algo-
rithm will slow down significantly for large cluster sizes, as it is
O(n logn) compared to O(n) for the bucketsort. The two bucketsort
variants use different bucket sizes, trading speed for quality. The al-
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x y z w

posoffset - - - -coord quant. offset
basepos rel. base coords coords scale
scale point sprite scale - alpha scale size scale
posin rel. point coords point size

void main (in float4 posin : POSITION,
in float4 colin : COLOR0,
out float4 posout : POSITION,
out float4 colout : COLOR0,
out float4 sizeout : PSIZE,
uniform float atten,
uniform float4 posoffset,
uniform float4 basepos,
uniform float4 scale)

{
uniform float4x4 model = glstate.matrix.modelview[0];
uniform float4x4 proj = glstate.matrix.projection;
float4 vec, homeye, eye;
float tmp;

/* relative coords → absolute coords */
vec.xyz = (posin.xyz + posoffset.www)

* basepos.www + basepos.xyz;
vec.w = 1.0;
/* modelview transformation + projection */
homeye = mul (model, vec);
posout = mul (proj, homeye);
eye = homeye / homeye.w;
/* effective point size calculation */
tmp = posin.w * basepos.w * scale.w

* rsqrt (atten * dot (eye.xyz, eye.xyz));
/* clamping minimum point size to 1 */
sizeout.x = scale.x * max (tmp, 1.0);
/* alpha calculation and attenuation for point sizes < 1 */
tmp = min (tmp, 1.0);
colout = colin;
tmp = colin.w * scale.z * tmp * tmp;
/* clamping minimum alpha value to keep extremely small points visible */
colout.w = max (tmp, 4.0/256);

}

Figure 15: The vertex program written in Cg.

gorithm using larger buckets has almost the same visual appearance
as the qsort algorithm, but exhibits some flickering during rotation
on critical data sets containing large and almost overlapping points.

The cluster selection scheme has about the same performance
impact on the rendering system as the flexible rendering backend
(less than 2 percent each), which allows us to switch the rendering
technique on the fly. Please note that for large viewports like 10002

the effect of adaptive hierarchy traversal is not noticeable for low
maximum traversal depths, as all clusters are traversed due to their
large projected size.

Things change when we reduce the viewport size. Table 3 lists
rendering times and the number of rendered points in the levels 1
to 6 for this scheme with no maximum traversal depth. We get early
view frustum culling at almost no cost for the adaptive rendering
algorithm, as this can be incorporated in the point projection size
calculation process. However, all tables show rendering times and
point numbers for viewing the full data set.

Figure 16 shows a close up region, rendered intentionally with
a very high projection size error of 14 in order to reveal the differ-
ences. The next two images show the same region rendered with-
out adaption with approximately the same number of points and all
points, respectively. Note that the projected screen size is only an
approximation for the maximum screen space error, as the centroid
size that used for evaluating the screen space error is not directly
coupled with the maximum distribution width of the children which
influences the error as well.

For more images and some realtime animations please take a
look at our web site:
http://www.vis.uni-stuttgart.de/pointclouds/

Figure 16: A closeup of the virgo data set, rendered at the really
coarse level 3 (123K pts = 0.74%, left), adaptively with approx-
imately the same number of points and high potential projection
error (130K pts, middle), and with all points (16.8M pts, right),
respectively.

Figure 17: A total view of one of the close up simulations with
16.8 million particles as well.

10 Conclusion and Future Work

In this paper we presented a technique for accelerating the visu-
alization of scattered point data compared to rendering flat point
arrays. We employed principal component analysis for creating a
hierarchy of point clusters, stored with quantized relative coordi-
nates in a data structure that separates cluster from point data. With
this data representation visualization quality can be traded for speed
with an adaptive rendering algorithm. The rendering process it-
self was accelerated using vertex programs on modern PC graphics
hardware. Finally, we are now able to visualize data sets with tens
of millions of points interactively on standard workstations.

One of the most promising — but also most challenging — ex-
tensions to the algorithm is the handling of time dependent data.
The rendering process can be left almost unchanged, but it is a topic
of ongoing research how the clustering step can be improved. It will
have to handle cluster transitions of single particles in a smooth
way, such that popping artifacts will not occur.

The current implementation of the clustering algorithms requires
all points as floating point data in memory, but they can be per-
formed on some other, remote supercomputer. Out-of-core cluster-
ing algorithms exist, and we want to investigate how they can be
applied to our case. Additionally, there are some issues with the
overestimation of the radiant flux during rendering with cumula-
tive blending in areas of high saturation. The system should detect
these areas and reduce the brightness of the generated clusters ac-
cordingly. Alternatively, high dynamic range rendering to floating
point frame buffers could be used.
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Figure 18: Visualization of a shock front,
simulated with SPH (1 million points).

Figure 19: SPH and dark matter galaxy
formation simulation rendered with sorted
anti-aliased points (540,000 points).

Figure 20: Reversible Apollonian packing
rendered with sorted point sprites.

An open question is how to handle multivariate data and how to
change the visualized data during runtime. Storing several color
values per point structure is one possibility, but this increases mem-
ory usage again. Color quantization and table lookup in the render-
ing step could help with regard to this aspect.

There are still some issues with the rendering of sorted points
with respect to overlapping points in adjacent clusters. Addition-
ally, there might be a chance to implement bucket sorting by ren-
dering to off-screen textures with the next generation graphics hard-
ware, and radix sorting could be an interesting alternative as well.
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SWAN, J. E., MUELLER, K., MÖLLER, T., SHAREEF, N., CRAWFIS, R., AND

YAGEL, R. 1997. An Anti-Aliasing Technique for Splatting. In Proc. Visualiza-
tion ’97, IEEE, 197–204.

WAND, M., FISCHER, M., PETER, I., MEYER AUF DER HEIDE, F., AND STRASSER,
W. 2001. The Randomized z-Buffer Algorithm. In Proc. SIGGRAPH ’01, ACM,
361–370.

WILLIAMS, P. L. 1992. Visibility Ordering Meshed Polyhedra. ACM Transactions on
Graphics 11, 2, 103–126.

ZWICKER, M., PFISTER, H., VAN BAAR, J., AND GROSS, M. 2001. EWA Volume
Splatting. In Proc. Visualization ’01, IEEE, 29–36.

ZWICKER, M., PFISTER, H., VAN BAAR, J., AND GROSS, M. 2001. Surface Splat-
ting. In Proc. SIGGRAPH ’01, ACM, 371–378.

440




